
Biolog

MitoPlateTM S-1 and MitoPlateTM I-1

for Characterization of Mammalian Cell Mitochondria

Assays: Mitochondrial Substrate Metabolism Sensitivity to Mitochondrial Inhibitors

PRODUCT DESCRIPTIONS AND INSTRUCTIONS FOR USE MitoPlate S-1 Cat. #14105 MitoPlate I-1 Cat. #14104

21124 Cabot Blvd. Hayward, CA 94545 TEL 510-785-2564, FAX 510-782-4639 ORDERS 1-800-284-4949 www.biolog.com

The most current version of this Technical Bulletin can be downloaded from Biolog's website at <u>www.biolog.com</u>. Questions about the use of this product should be directed to Biolog, Inc. Technical Services by E-mail at <u>tech@biolog.com</u>. OmniLog[®] is a registered trademark of Biolog, Inc. and the OmniLog instrument is covered by U. S. Patent No. 6,271,022, owned by Biolog, Inc.

For Research Use Only

Part# 00P 273, Rev A, January 2018

CONTENTS

I.	Introduction	2
	a. Overview	2
	b. Background	2
	c. Uses	2
	d. Advantages	2
II.	Product Descriptions	4
III.	Protocol Information	4
	a. Cell Number Optimization	4
	b. Cell Permeabilization Optimization	4
IV.	MitoPlate S-1 Instructions For Use	5
V.	MitoPlate I-1 Instructions For Use	7
VI.	References	9

I. Introduction

a. Overview

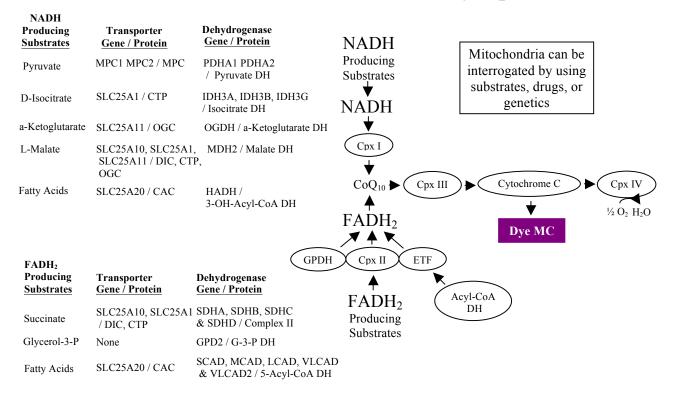
MitoPlates[™] from Biolog provide a powerful research tool by allowing scientists to run preconfigured sets of 96 mitochondrial function assays in one experiment. Mitochondria can be interrogated and characterized in novel ways, looking at rates of substrate metabolism, sensitivity to drugs and other chemicals, and effects of mutations in mitochondrial genes.

b. Background

Mitochondria play a primary role in energy production by cells. It is clear that these organelles are dynamic as the quantity and structure of the mitochondria in cells can change. Mitochondria are complex, consisting of over 1,000 proteins, the vast majority of which are coded for by nuclear rather than mitochondrial DNA. In addition to proteins, mitochondria also have specialized membranes and they can interact with each other and with other cellular organelles such as endoplasmic reticuli.

c. Uses

By providing a new high resolution approach to assaying mitochondrial function, MitoPlates allow scientists to investigate how mitochondria change with differentiation, cancer and ageing, neurological disorders, metabolic disorders, immune cell activation, bacterial/viral infection, inborn genetic disorders, or any other change that can be experimentally modeled at the cellular level.


d. Advantages

MitoPlates provide a unique and powerful tool for simultaneously running 96 relevant assays to elucidate changes in mitochondrial properties. Some principal advantages are:

• **Proven Technology:** A sizeable published literature documents the successful use of Biolog's PMM technology as applied to mammalian cell research. An updated listing can be found in the Bibliography section of the Biolog website at http://www.biolog.com/bibliography.php. The PMM technology is based upon measurement of live cell properties using a bioenergetics

detection chemistry. The MitoPlates are an extension of PMM technology, performing similar bioenergetics detection, but on live cells that are instantaneously permeabilized to allow access to the mitochondrial organelles.

- **Simple Protocol:** Add the permeabilizing buffer with dye mix, add the cells, and read the rate of purple color formation. Purification of mitochondria is not required.
- **Fast Results:** For rate measurements, sufficient color forms in as little as two hours. The purple formazan product is soluble and stable and can be measured as soon as it forms.
- **Flexible Format:** The Biolog OmniLog® instrument is recommended for reading the MitoPlates because it can read multiple plates kinetically (up to 16 at 5 minute read intervals) while under temperature-controlled incubation. However, the MitoPlates can also be read with standard microplate readers that allow kinetic reading at OD₅₉₀.
- Sensitivity: The MitoPlate assays work with as little as 20,000 cells per well.
- **Broad Applicability:** The MitoPlates can be used with nearly any type of cell line or primary cell. The main requirement is that a uniform cell suspension must be prepared so that each well receives the same amount of cells. For these assays it does not matter if the cells are attached to the well bottom or floating in suspension.
- **High Resolution Analysis:** The Figure below highlights the numerous assay options including measurement of (1) Rates of electron flow from many NADH and FADH₂ producing mitochondrial substrates, (2) Sensitivity of electron flow to a) 22 diverse mitochondrial inhibitors using different mitochondrial substrates, b) novel drugs or chemicals, c) mutations in genes that alter mitochondrial function.

Mitochondrial Electron Flow Assay Options

II. Product Descriptions

- **Products:** MitoPlates are 96-well microplates pre-coated with different tests which are dried on the bottom of each well. Other components of the assay are (1) A solution of the permeabilizing agent which must be prepared by the user, (2) The Biolog MAS solution which is osmotically optimized to preserve the physical structure of the cells following permeabilization, (3) The Biolog Redox Dye Mix which is used to measure the electron flow to the distal end of the electron transport chain, (4) A solution of the mitochondrial substrate which also must be prepared by the user. This solution is required only for the MitoPlate I-1.
- **Intended Use:** For Laboratory Use Only, to study the functional properties of mitochondria from permeabilized mammalian or other animal cells.
- **Product Storage:** MitoPlates should be refrigerated and stored at 4°C. Recommended storage conditions for chemical solutions are provided on their labels or should be determined by the user. MitoPlates may be taken out and prewarmed before use. For best results, use all products before the expiration date printed on the label.
- **Chemical Safety:** Safety Data Sheets for all products are available from Biolog and posted on the Biolog website at http://biolog.com/msds/.

III. Protocol Information

The protocol for MitoPlate S-1, the mitochondrial substrate plate, is provided on pages 5-6.

The protocol for MitoPlate I-1, the mitochondrial inhibitor plate, is provided on pages 7-9.

a. Cell Number Optimization

Increasing the number of cells per well will increase the rate of dye reduction. Generally speaking, 30,000 cells per well should be close to ideal. This may be adjusted up or down if the color formation is too weak or too strong.

b. Cell Permeabilization Optimization

The cell permeabilization concentration can also be adjusted for different types of cells. Generally speaking, 30ug/ml of saponin should be close to an ideal concentration. Increasing the concentration will usually increase the rate of color formation, but it may also damage the mitochondrial membrane, causing loss of mitochondria-associated electron flow and loss of sensitivity to mitochondrial inhibitors. Other permeabilizing agents may be substituted for saponin, for example digitonin or cholesterol-sequestering toxins, but these must be validated before use. It is possible that the activity of these permeabilizing agents may change depending on the vendor and the production lot.

IV. MitoPlate S-1 Instructions For Use

A1 No Substrate	A2 α-D-Glucose	A3 Glycogen	A4 D-Glucose- 1-PO4	A5 No Substrate	A6 α-D-Glucose	A7 Glycogen	A8 D-Glucose- 1-PO4	A9 No Substrate	A10 α-D-Glucose	A11 Glycogen	A12 D-Glucose- 1-PO4
B1 D-Glucose- 6-PO4	B2 D-Gluconate- 6-PO4	B3 D,L-α-Glycerol- PO4	B4 L-Lactic Acid	B5 D-Glucose- 6-PO4	B6 D-Gluconate- 6-PO4	B7 D,L- α -Glycerol- PO4	B8 L-Lactic Acid	B9 D-Glucose- 6-PO4	B10 D-Gluconate- 6-PO4	B11 D,L- a -Glycerol- PO4	B12 L-Lactic Acid
C1 Pyruvic Acid	C2 Citric Acid	C3 D,L-Isocitric Acid	C4 cis-Aconitic Acid	C5 Pyruvic Acid	C6 Citric Acid	C7 D,L-Isocitric Acid	C8 cis-Aconitic Acid	C9 Pyruvic Acid	C10 Citric Acid	C11 D,L-Isocitric Acid	C12 cis-Aconitic Acid
D1 α-Keto-Glutaric Acid	D2 Succinic Acid	D3 Fumaric Acid	D4 L-Malic Acid	D5 α-Keto-Glutaric Acid	D6 Succinic Acid	D7 Fumaric Acid	D8 L-Malic Acid	D9 α-Keto-Glutaric Acid	D10 Succinic Acid	D11 Fumaric Acid	D12 L-Malic Acid
E1 α-Keto-Butyric Acid	E2 D,L-β-Hydroxy- Butyric Acid	E3 L-Glutamic Acid	E4 L-Glutamine	E5 a -Keto-Butyric Acid	E6 D,L-β-Hydroxy- Butyric Acid	E7 L-Glutamic Acid	E8 L-Glutamine	E9 α-Keto-Butryric Acid	E10 D,L-β-Hydroxy- Butyric Acid	E11 L-Glutamic Acid	E12 L-Glutamine
F1 Ala-Gln	F2 L-Serine	F3 L-Ornithine	F4 Tryptamine	F5 Ala-Gln	F6 L-Serine	F7 L-Ornithine	F8 Tryptamine	F9 Ala-Gln	F10 L-Serine	F11 L-Ornithine	F12 Tryptamine
G1 L-Malic Acid 100uM	G2 Acetyl-L-Carnitine + L-Malic Acid 100uM	G3 Octanoyl-L- Carnitine + L-Malic Acid 100uM	G4 Palmitoyl-D,L- Carnitine + L-Malic Acid 100uM	G5 L-Malic Acid 100uM	G6 Acetyl-L-Carnitine + L-Malic Acid 100uM	G7 Octanoyl-L- Carnitine + L-Malic Acid 100uM	G8 Palmitoyl-D,L- Carnitine + L-Malic Acid 100uM	G9 L-Malic Acid 100uM	G10 Acetyl-L-Carnitine + L-Malic Acid 100uM	G11 Octanoyl-L- Carnitine + L-Malic Acid 100uM	G12 Palmitoyl-D,L- Carnitine + L-Malic Acid 100uM
H1 Pyruvic Acid + L-Malic Acid 100uM	H2 Y-Amino-Butyric Acid + L-Malic Acid 100uM	H3 α-Keto-Isocaproic Acid + L-Malic Acid 100uM	H4 L-Leucine + L-Malic Acid 100uM	H5 Pyruvic Acid + L-Malic Acid 100uM	H6 γ-Amino-Butyric Acid + L-Malic Acid 100uM	H7 α-Keto-Isocaproic Acid + L-Malic Acid 100uM	H8 L-Leucine + L-Malic Acid 100uM	H9 Pyruvic Acid + L-Malic Acid 100uM	H10 Y-Amino-Butyric Acid + L-Malic Acid 100uM	H11 α -Keto-Isocaproic Acid + L-Malic Acid 100uM	H12 L-Leucine + L-Malic Acid 100uM

MitoPlate S-1: Mitochondrial Function Assays Testing Substrates

Intended Use: To assay the function of mitochondria from cells using mitochondrial substrates as probes.

MicroPlate Layout: The MicroPlate has a triplicate repeat of a set of 31 substrates (rows A-B cytoplasmic, rows C-H mitochondrial) precoated and dried into the wells. Either 3 assay samples can be run or one sample in triplicate. The mitochondrial substrates are transported via different transporters and metabolized using different dehydrogenases and electron transport chain components. The MicroPlate can also be used to assess the specificity of substrate transport inhibitors, dehydrogenase inhibitors, or electron transport chain inhibitors.

<u>Assay Principle</u>: Mitochondrial function can be assayed by measuring the rates of electron flow into and through the electron transport chain from metabolic substrates that produce NADH (e.g. L-malate, α -ketoglutarate, D-isocitrate, L-glutamate, D- β -hydroxy-butyrate) or FADH₂ (e.g. succinate, α -glycerol-PO4). Each substrate follows a different route using different transporters to enter the mitochondria, and then different dehydrogenases to produce NADH or FADH₂. The electrons travel from the beginning (complex 1 or 2) to the distal portion of the electron transport chain where a tetrazolium redox dye (MC) acts as a terminal electron acceptor that turns purple upon reduction.

Recommended Protocol:

Prepare in advance	2x Biolog MAS (Mite 6x Redox Dye MC (E 24x saponin (e.g. 720 sterile water	Biolog cat# 7435	53)	,
Assay Mix:		Volumes	Volumes	1.4x extra
		per well	per plate	for pipetting
Combine	2x Biolog MAS	15ul	1500ul	2100ul
	6x Redox Dye MC	10ul	1000ul	1400ul
	24x saponin	2.5ul	250ul	350ul
	sterile water	2.5ul	250ul	350ul
Add to wells	TOTAL	30ul	3000ul	4200ul

Cell Suspension Preparation - 2x cells in 1x Biolog MAS

Harvest and resuspend cells in 1x Biolog MAS. Filter the cell suspension through a 70 micron nylon filter (cell strainer, Falcon 352350) to remove clumps. Count the cell number and determine their viability with trypan blue. The cells should have viability >95%.

For a final cell density of 20,000 cells per well, one plate requires a total of 2×10^6 cells in 3 ml of $1 \times$ Biolog MAS (666,667 cells per ml).

For a final cell density of 30,000 cells per well, one plate requires a total of 3×10^6 cells in 3 ml of $1 \times$ Biolog MAS (1,000,000 cells per ml).

For a final cell density of 40,000 cells per well, one plate requires a total of 4×10^6 cells in 3 ml of $1 \times$ Biolog MAS (1,333,334 cells per ml).

Assay Steps:

1. Pipet 30ul per well of the <u>Assay Mix</u> into all wells and incubate at 37° C for 1 hour to allow substrates to fully dissolve.

2. Dispense the <u>Cell Suspension</u> to all wells by adding 30ul per well of the 2x cell suspension in 1x Biolog MAS.

3. Load the MicroPlate into the OmniLog® for kinetic reading of the rate of purple color formation. Alternatively, the color formation can be read kinetically on a microplate reader using OD₅₉₀.

Ordering Information:

Catalog #	Description
14105	MitoPlate S-1
72303	Biolog MAS
74353	Biolog Redox Dye Mix MC
74354	Biolog Redox Dye Mix MD
96161	OmniLog PM-M System (NA Plug)
96162	OmniLog PM-M System (Schuko Plug)
96164	OmniLog PM-M System (UK Plug)
Not Included:	Saponin permeabilizing solution

V. MitoPlate I-1 Instructions For Use

A1 No inhibitor <u>No substrate</u> With Saponin	A2 No inhibitor <u>No substrate</u> With Saponin	A3 No inhibitor <u>No substrate</u> With Saponin	A4 No inhibitor <u>No substrate</u> With Saponin	A5 No inhibitor <u>With substrate</u> With Saponin	A6 No inhibitor <u>With substrate</u> With Saponin	A7 No inhibitor <u>With substrate</u> With Saponin	A8 No inhibitor <u>With substrate</u> With Saponin	A9 Meclizine	A10	A11	A12
								1	2	3	4
B1 Complex I Inhibitor Rotenone	B2	B3	B4	B5 Complex I Inhibitor Pyridaben	B6	B7	B8	B9 Berberine	B10	B11	B12
1	2	3	4	1	2	3	4	1	2	3	4
C1 Complex II Inhibitor Malonate	C2	C3	C4	C5 Complex II Inhibitor Carboxin	C6	C7	C8	C9 Alexidine	C10	C11	C12
1	2	3	4	1	2	3	4	1	2	3	4
D1 Complex III Inhibitor Antimycin A	D2	D3	D4	D5 Complex III Inhibitor Myxothiazol	D6	D7	D8	D9 Phenformin	D10	D11	D12
1	2	3	4	1	2	3	4	1	2	3	4
E1 Uncoupler FCCP	E2	E3	E4	E5 Uncoupler 2,4-Dinitrophenol	E6	E7	E8	E9 Diclofenac	E10	E11	E12
1	2	3	4	1	2	3	4	1	2	3	4
F1 Ionophore, K Valinomycin	F2	F3	F4	F5 Calcium CaCl2	F6	F7	F8	F9 Celastrol	F10	F11	F12
1	2	3	4	1	2	3	4	1	2	3	4
G1 Gossypol	G2	G3	G4	G5 Nordihydro- guaiaretic acid	G6	G7	G8	G9 Trifluoperazine	G10	G11	G12
1	2	3	4		2	3	4	1	2	3	4
H1 Polymyxin B	H2	Н3	H4	H5 Amitriptyline	H6	H7	H8	H9 Papaverine	H10	H11	H12
	1	1	1						1	1	

MitoPlate I-1: Mitochondrial Function Assays Testing Inhibitors

Intended Use: To assay the function of mitochondria from cells using mitochondrial inhibitors as probes.

MicroPlate Layout: The MicroPlate has 22 mitochondrial inhibitors at 4 dilutions precoated and dried into the wells. There are also 2 sets of control wells, each well repeated 4 times (negative control A1-A4 and positive control A5-A8).

Assay Principle: Mitochondrial function can be assayed by measuring the sensitivity of mitochondria to this set of 22 diverse inhibitors. The assays can be run with different metabolic substrates that produce NADH (e.g. L-malate, α -ketoglutarate, D-isocitrate, L-glutamate, D- β -hydroxy-butyrate) or FADH₂ (e.g. succinate, α -glycerol-PO4). Each substrate feeds electrons into the electron transport chain following a different route. The electrons travel from the beginning (complex 1 or 2) to the distal portion of the electron transport chain where a tetrazolium redox dye (MC) acts as a terminal electron acceptor that turns purple upon reduction. For example, a metabolic substrate that feeds complex 1 (L-malate) will result in a strong flow of electrons via malate dehydrogenase, which can be inhibited by either a complex 1 inhibitor (rotenone, pyridaben) or a complex 3 inhibitor (antimycin A, myxothiazol). A metabolic substrate that feeds complex 2 (succinate) will result in a strong flow of electrons via succinate dehydrogenase, which can be inhibited by either a complex 3 inhibitor (3-nitropropionic acid, carboxin) or a complex 3 inhibitor (antimycin A, myxothiazol). The Reference section provides some references on the mode of action of the 22 inhibitors.

Recommended Protocol:

Prepare in advance:	2x Biolog MAS (Mitochondrial Assay Solution, Biolog cat# 72303)
	6x Redox Dye MC, (Biolog cat# 74353)
	24x saponin (e.g. 720ug/ml for 30ug/ml; 2400ug/ml for 100ug/ml)
	24x substrate (e.g. 96mM sodium L-malate or succinate, pH7.2)
	sterile water

Assay Mix with Substr	Volumes per well	Volumes per plate	1.4x extra for pipetting	
Combine	2x Biolog MAS	15ul	1500ul	2100ul
	6x Redox Dye MC	10ul	1000ul	1400ul
	24x saponin	2.5ul	250ul	350ul
	24x substrate	2.5ul	250ul	350ul
Add to wells	TOTAL	30ul	3000ul	4200ul
For negative control w				
Assay Mix with No Su	bstrate:	Volumes	Volumes	4x extra
		per well	per plate	for pipetting*
Combine	2x Biolog MAS	15ul	60ul	240ul
	6x Redox Dye MC	10ul	40u1	160ul
	24x saponin	2.5ul	10ul	40ul
	sterile water	2.5ul	10ul	40u1
Add to wells	TOTAL	30ul	120ul	480ul

* If using a multi-channel pipettor and a reagent reservoir, you will need 4x reagent volume to fill tips accurately. If you prefer to use a single-channel pipet for wells A1 – A4, you may use 1.4x volume.

Cell Suspension Preparation – 2x cells in 1x Biolog MAS

Harvest and resuspend cells in 1x Biolog MAS. Filter the cell suspension through a 70 micron nylon filter (cell strainer, Falcon 352350) to remove clumps. Count the cell number and determine their viability with trypan blue. The cells should have viability >95%.

For a final cell density of 20,000 cells per well, one plate requires a total of 2×10^6 cells in 3 ml of $1 \times$ Biolog MAS (666,667 cells per ml).

For a final cell density of 30,000 cells per well, one plate requires a total of 3×10^6 cells in 3 ml of $1 \times$ Biolog MAS (1,000,000 cells per ml).

For a final cell density of 40,000 cells per well, one plate requires a total of 4×10^6 cells in 3 ml of $1 \times$ Biolog MAS (1,333,334 cells per ml).

Assay Steps:

1. Pipet 30ul per well of the Assay Mix with No Substrate into the negative control wells, A1-A4.

2. Pipet 30ul per well of the <u>Assay Mix with Substrate</u> into all other wells. Start with Column 12 and pipet from Column 12 to Column 5 using eight pipet tips. Then detach one pipet tip and fill wells B4-H4, B3-H3, B2-H2, and B1-H1.

3. Dispense the <u>Cell Suspension</u> to all wells by adding 30ul per well of the 2x cell suspension in 1x Biolog MAS.

4. Load the MicroPlate into the OmniLog® for kinetic reading of the rate of purple color formation. Alternatively, the color formation can be read kinetically on a microplate reader using OD₅₉₀.

Ordering Information:

Catalog #	Description
14104	MitoPlate I-1
72303	Biolog MAS
74353	Biolog Redox Dye Mix MC
74354	Biolog Redox Dye Mix MD
96161	OmniLog PM-M System (NA Plug)
96162	OmniLog PM-M System (Schuko Plug)
96164	OmniLog PM-M System (UK Plug)
Not Included: S	Saponin permeabilizing solution and substrate solutions for MitoPlate I-1

VI. References

Meclizine

 Meclizine inhibits mitochondrial respiration through direct targeting of cytosolic phosphoethanolamine metabolism. Vishal M. Gohil, Lin Zhu, Charli D. Baker, Valentin Cracan, Abbas Yaseen, Mohit Jain, Clary B. Clish, Paul S. Brookes, Marica Bakovic, and Vamsi K. Mootha. J Biol Chem. 2013; 288(49):35387–35395.

Rotenone

 Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Li N1, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP. J Biol Chem. 2003; 278(10):8516–8525.

<u>Pyridaben</u>

3. Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. Navarro A, Bández MJ, Gómez C, Repetto MG, Boveris A.. J Bioenerg Biomembr. 2010; 42(5):405-12.

Berberine

- Mechanisms of berberine (Natural Yellow 18)–induced mitochondrial dysfunction: Interaction with the adenine nucleotide translocator. Claudia V. Pereira, Nuno G. Machado, and Paulo J. Oliveira. Toxicol Sci. 2008; 105(2):408–417.
- 5. Mitochondria and NMDA Receptor-Dependent Toxicity of Berberine Sensitizes Neurons to Glutamate and Rotenone Injury. Kysenius K, Brunello CA, Huttunen HJ. PLoS ONE. 2014; 9(9): e107129.

Malonate

- 6. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Valls-Lacalle L, Barba I, Miró-Casas E, Alburquerque-Béjar JJ, Ruiz-Meana M, Fuertes-Agudo M, Rodríguez-Sinovas A, García-Dorado D. Cardiovasc Res. 2016 Mar 1;109(3):374-84.
- 7. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. J Biol Chem. 2012 Aug 3;287(32):27255-64.
- Substrate-Specific Reduction of Tetrazolium Salts by Isolated Mitochondria, Tissues, and Leukocytes. Fedotcheva NI, Litvinova EG, Zakharchenko MV, Khunderyakova NV, Fadeev RS, Teplova VV, Fedotcheva TA, Beloborodova NV, Kondrashova MN. Biochemistry (Mosc). 2017 Feb;82(2):192-204

<u>Carboxin</u>

9. Studies on the binding of carboxin analogs to succinate dehydrogenase. Christopher J. Coles, Thomas P. Singer, Gordon A. White, and G. Denis Thorn. J Biol Chem. 1978; 253(16):5573-5578.

Alexidine

- 10. Pharmacological targeting of the mitochondrial phosphatase PTPMT1. Doughty-Shenton D1, Joseph JD, Zhang J, Pagliarini DJ, Kim Y, Lu D, Dixon JE, Casey PJ. J Pharmacol Exp Ther. 2010; 333(2):584-92.
- 11. PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Nath AK, Ryu JH, Jin YN, Roberts LD, Dejam A, Gerszten RE, Peterson RT. Cell Reports. 2015; 10(5):694–701.

Antimycin A and Myxothiazol

 Mitochondrial Electron Transport Chain Complex III Is Required for Antimycin A to Inhibit Autophagy. Xiuquan Ma, Mingzhi Jin, Yu Cai, Hongguang Xia, Kai Long, Junli Liu, Qiang Yu and Junying Yuan. Chem Biol. 2011; 18(11):1474–1481.

Phenformin

- 13. Targeting mitochondria metabolism for cancer therapy. Samuel E Weinberg and Navdeep S Chandel. Nat Chem Biol. 2015; 11(1): 9–15.
- 14. Molecular features of biguanides required for targeting of mitochondrial respiratory complex I and activation of AMP-kinase. Hannah R. Bridges, Ville A. Sirviö, Ahmed-Noor A. Agip, and Judy Hirst. BMC Biol. 2016; 14: 65.

FCCP

 Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca(2+) current in liver cells. To MS, Aromataris EC, Castro J, Roberts ML, Barritt GJ, Rychkov GY. Arch Biochem Biophys. 2010; 495(2):152-8.

2,4-Dinitrophenol

 Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. Valérie Desquiret, Dominique Loiseau, Caroline Jacques, Olivier Douay, Yves Malthièry, Patrick Ritz, Damien Roussel. Biochimica et Biophysica Acta. 2006; 1757(1):21–30.

Diclofenac

- Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI). Syed M, Skonberg C, Hansen SH. Toxicol In Vitro. 2016; 31:93-102.
- Liver injury from nonsteroidal anti-inflammatory drugs in the United States. Schmeltzer PA1, Kosinski AS2, Kleiner DE3, Hoofnagle JH3, Stolz A4, Fontana RJ5, Russo MW1; Drug-Induced Liver Injury Network (DILIN). Liver Int. 2016;36(4):603-9.
- Action of diclofenac on kidney mitochondria and cells. Ng LE1, Vincent AS, Halliwell B, Wong KP. Biochem Biophys Res Commun. 2006; 348(2):494-500.
- 20. Role of mitochondrial permeability transition in diclofenac-induced hepatocyte injury in rats. Masubuchi Y1, Nakayama S, Horie T. Hepatology. 2002; 35(3):544-51.

Valinomycin

- Relationship of potassium ion transport and ATP synthesis in pea cotyledon mitochondria. Hamman WM, Spencer M. Can J Biochem. 1977; 55(4):376-83.
- 22. Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes. Suzanne M. Felber and Martin D. Brand. FEBS Letters. 1982; 150(1):122-124.
- Valinomycin induced energy-dependent mitochondrial swelling, cytochrome c release, cytosolic NADH/cytochrome c oxidation and apoptosis. Lofrumento DD1, La Piana G, Abbrescia DI, Palmitessa V, La Pesa V, Marzulli D, Lofrumento NE. Apoptosis. 2011; 16(10):1004-13.

Calcium

- 24. Mitochondrial calcium and the permeability transition in cell death. John J. Lemasters, Tom P. Theruvath, Zhi Zhong, Anna-Liisa Nieminen. Biochimica et Biophysica Acta. 2009; 1787 (11):1395–1401.
- 25. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. P Pinton, C Giorgi, R Siviero, E Zecchini and R Rizzut. Oncogene. 2008; 27(50):6407–6418.
- Mitochondrial calcium overload is a key determinant in heart failure. Gaetano Santullia, Wenjun Xiea, Steven R. Reikena, and Andrew R. Marks. Proc Natl Acad Sci USA. 2015; 112(36):11389–11394.

Celastrol

- 27. Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells. Guozhu Chen, Xuhui Zhang, Ming Zhao, Yan Wang, Xiang Cheng, Di Wang, Yuanji Xu, Zhiyan Du and Xiaodan Yu. Chen et al. BMC Cancer. 2011; 11:170.
- 28. Celastrol induces mitochondria-mediated apoptosis in hepatocellular carcinoma Bel-7402 cells. Pei-Pei Li,, Wei He,

Ping-Fan Yuan, Sha-Sha Song, Jing-Tao Lu and Wei We. Am. J. Chin. Med. 2015; 43:137-148.

Gossypol

- 29. Gossypol inhibits electron transport and stimulates ROS generation in Yarrowia lipolytica mitochondria. Anna Yu Arinbasarova, Alexander G Medentsev, and Vladimir I Krupyanko. Open Biochem J. 2012; 6:11–15.
- 30. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Oliver CL, Miranda MB, Shangary S, Land S, Wang S, Johnson DE. Mol Cancer Ther. 2005; 4(1):23-31.

Nordihydroguaiaretic Acid

- Glutathione Oxidation and Mitochondrial Depolarization as Mechanisms of Nordihydroguaiaretic Acid-Induced Apoptosis in Lipoxygenase-Deficient FL5.12 Cells. Shyam S. Biswal, Kaushik Datta, Stephanie D. Shaw, Xiang Feng, John D. Robertson, and James P. Kehrer. Toxicological Sciences. 2000; 53, 77–83.
- Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: An update. Jian-Ming Lü, Jacobo Nurko, Sarah M. Weakley, Jun Jiang, Panagiotis Kougias, Peter H. Lin, Qizhi Yao, and Changyi Chen. Med Sci Monit. 2010 April 28; 16(5): RA93–R100.
- Paradoxical cellular effects and biological role of the multifaceted compound nordihydroguaiaretic acid. Hernández-Damián J1, Andérica-Romero AC, Pedraza-Chaverri J. Arch Pharm (Weinheim). 2014 Oct;347(10):685-97.

Trifluoperazine

- Cytotoxicity of phenothiazine derivatives associated with mitochondrial dysfunction: a structure-activity investigation. de Faria PA, Bettanin F, Cunha RL, Paredes-Gamero EJ, Homem-de-Mello P, Nantes IL, and Rodrigues T. Toxicology. 2015 Apr 1;330:44-54.
- Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice. Chaudhuri S, McCullough SS, Hennings L, Brown AT, Li SH, Simpson PM, Hinson JA, James LP. Toxicol Appl Pharmacol. 2012 Oct 15;264(2):192-201.
- 36. Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells. Lee CS1, Park SY, Ko HH, Song JH, Shin YK, Han ES. Neurochem Int. 2005 Jan;46(2):169-78.

Polymyxin B

- Major pathways of polymyxin-induced apoptosis in rat kidney proximal tubular cells. Mohammad A. K. Azad, Jesmin Akter, Kelly L. Rogers, Roger L. Nation, Tony Velkov and Jian Li. Antimicrob. Agents Chemother. 2015; 59(4):2136-2143.
- 38. Polymyxin B nephrotoxicity: From organ to cell damage. Vattimo MdFF, Watanabe M, da Fonseca CD, Neiva LBdM, Pessoa EA, Borges FT. PLoS One. 2016; 11(8):e0161057.
- Polymyxin B identified as an Inhibitor of alternative NADH Dehydrogenase and Malate: Quinone Oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. Tatsushi Mogi Yoshiro Murase Mihoko Mori Kazuro Shiomi Satoshi Ōmura Madhavi P. Paranagama Kiyoshi Kita. J Biochem. 2009; 146(4):491-499.

Amitriptyline

- 40. Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells. Marina Villanueva-Paz, Mario D. Cordero, Ana Delgado Pavón et al. Genes Cancer. 2016; 7(7-8): 260–277.
- Oral treatment with amitriptyline induces coenzyme Q deficiency and oxidative stress in psychiatric patients. Moreno-Fernández AM1, Cordero MD, Garrido-Maraver J, Alcocer-Gómez E, Casas-Barquero N, Carmona-López MI, Sánchez-Alcázar JA, de Miguel M. J Psychiatr Res. 2012; 46(3):341-5.

Papaverine

- Effect of dopamine, dimethoxyphenylethylamine, papaverine, and related compounds on mitochondrial respiration and complex I activity. Nami Morikawa, Yuko Nakagawa-Hattori, Yoshikuni Mizuno. J Neurochemistry. 1996; 66(3):1174–1181.
- 43. Effect of papaverine on the energy processes of myocardial mitochondria. Urakov AL, Baranov AG. Farmakol Toksikol. 1979; 42(2):132-6.
- 44. Identification of small molecules that improve ATP synthesis defects conferred by Leber's hereditary optic neuropathy mutations. Sandipan Datta, Alexey Tomilov, Gino Cortopassi. Mitochondrion. 2016; 30:177–186.